The Global Leader Providing The Most Comprehensive ADS-B Out AML STC's for Business and Personal Aircraft!

www.CMDFlightSolutions.com

ADS-B Out Solutions @ Booth 424

ADS-B Out Regulatory Basis

- 14 CFR 91.225 and 91.227 drive the requirement for DO-260B compliant ADS-B Out.
- Specifically 91.227(d)(8) drives the requirement for the transmission of Flight ID.
- AC 20-165B provides the installation guidance which our STCs used.
- ADS-B Out should be installed under an STC
 - Supports aircraft re-sale Supports worldwide regulatory agency acceptance
- There is no Requirement for Enhanced Surveillance for ADS-B Out
- No Need for FMS updates
 - Except the UNS FMS has an integrated GPS so you must get to the SCN 1000.7 1(x)W or later
- No Impact to RVSM, Substantiation Report Included in our STC Packages.

ADS-B Out Solutions

- CMD Covers Nearly All Part 25 and Part 23 Biz Jets, Turbo Props & Regional Aircraft
- Current Equipage Prerequisites are minimal.
- ST04159CH Part 25 Primus II Radio Suite EASA/ANAC/MEX DGAC/TCCA Validated
- ST03424CH Part 25 TDR-94/94D EASA/ANAC/MEX DGAC/TCCA Validated
- SA04051CH Part 23 TDR-94/94D EASA/ANAC/MEX DGAC/TCCA Validated
- TDR-94/D -501 is covered on all aircraft listed in our AML
 - -502 is covered on a limited set of aircraft but all GPS Pairings
- DER Services Available for Major Alteration Approvals
- Outstanding Customer and Technical Support Please reference our website or call

Primus II Integrated Comm Unit ADS-B Block Diagram

TDR-94/94D ADS-B Out Block Diagram With Digital Discrete Adaptor(DDA)

(simply lights the annunciator)

TDR-94/94D ADS-B Out Block Diagram With ADS-B Flight ID Adaptor (AFID)

- Flight ID, Drives ADS-B Fail Annunciator and provides data bus concentration
- Can save a significant amount of money in Controller and IOC Updates

TDR-94/D and H/W STC Includes:

- Covers one of 8 GPS sources: (Esterline/CMC, UNS, FFS, H/W, Collins, Bendix King)
- Includes the FAA Approved Flight Manual Supplement, Instructions for Continued Airworthiness, Installation Instructions, Strapping Document, and Ground Test
- No External Fail Annunciator Required for Honeywell STC
- TDR-94/D STC's include Digital Discrete Adapter (DDA) or AFID that drives external ADS-B Out fail annunciator.
- Installation Approval of the upgraded Transponders, our DDA/AFID, wiring and installation of the annunciator and upgraded Primus II RCZ-8xx.
- GPS Upgrades or New Stand Alone Installation Approval now included
- GPS Antenna Splitter Installation Approval now included

Transponder / GPS Pairings

TDR-94/94D

- Universal Avionics UNS-1(x)W
- Esterline/CMC CMA-3024/5024
- FreeFlight Systems 1203C
- Collins GPS-4000S
- Honeywell HG2021GD07
- Honeywell HG2021KB02
 - (via CMC CMA-5024 part number)

Primus II RCZ-8xx

- Honeywell HG2021GD04 D06
- Universal Avionics UNS-1(x)W
- Esterline/CMC CMA-3024
- Bendix King KGS-200

- GPS Upgrades and Stand Alone Installations are now included in all STCs
- GPS Antenna upgrades of the same footprint/bolt pattern are now included
- GPS Antenna Splitter Now Approved as part of STC

GPS Splitter

FFS GPS Splitter 87607-00

- Use exiting or upgraded Antenna
- No New Holes in Fuselage
- Huge Time Saver
- Saves Significant Money
- No Need for Damage Tolerance Approval

GPS Splitter

FFS GPS Splitter 87607-00 Details

- Great Solution when installing a Stand Alone GPS Source
- Use exiting or upgraded Antenna Upgraded Antenna Covered by our STC
- Following our Worksheet:
 - Determine New Antenna Gain vs Old Find one with the same footprint/bolt pattern
 - Determine which GPS Source will provide the 5Vdc to the new Antenna's Pre Amp (Connect to J1)
 - J3 blocks the 5 Vdc from getting to the Antenna, A1, connector
 - Note that J2 is Unused
 - Determine Pre Amp Gain, Coax Loss and Splitter Loss to each GPS
 - Determine if additional attenuation is required in either GPS Path

GPS Splitter Detail

5.3 GPS Antenna Splitter Loss Determination

- Via the new GPS Antenna Splitter, re-establish a GPS Antenna connection to the existing GPS that is equivalent to the currently implemented configuration ensuring an equivalent signal level is hitting the existing GPS.
- Via the GPS Antenna Splitter, establish a GPS Antenna connection to the new GPS with no more than loss given a 29.5 dB Pre-Amp gain antenna. (You can have up to 13.5 dB loss with a 33 dB pre-amp gain Antenna.)

Table 1 – GPS Antenna Pre-Amp Gain and Signal Level at GPS									
Antenna Pre-Amp Gain	Acceptable Signal Level At								
	Loss	GPS							
26.5 +/- 3dB	0 dB < Cable Loss > 10 dB	13.5 to 29.5 dB							
29.5 +/- 3dB	3 dB < Cable Loss > 13 dB	13.5 to 29.5 dB							
33.0 +/- 3dB	6 dB <u><</u> Cable Loss <u>></u> 16 dB	13.5 to 29.5 dB							

Table 1 – GPS Antenna Pre-Amp Gain vs Cable Loss

3. Install the splitter so either GPS's 5 Vdc power is provided to the new GPS Antenna pre-amp.

GPS Splitter Detail (cont)

Detailed Instructions:

Flight Solutions

required to the existing GPS if the existing Antenna had no Pre-Amp Gain.

GPS Splitter Detail (cont)

- Determine Splitter J3 (does not pass 5 Vdc to antenna) signal loss and Signal Strength at the 4. GPS:
 - J3 is attenuated 7 dB. а.
 - Existing GPS Coax Loss (Step 1e above): b.
 - Splitter to GPS Coax Loss (Length (ft) x Loss/ft): 0.14 dB B С.
 - Total Loss in Splitter J3 path (add a, b, c): d.
 - Subtract Total Loss (d) from Pre-Amp Gain (2) e.
 - 20.94 dB Signal Level at GPS Ensure Signal Level at GPS (e) is acceptable, reference Table 1. f.

Use a 20 dB attenuator (PE7003-20)

8.56 dB

7 dB

1.42 dB

dB

IB Total Loss

Note: If this J3 Splitter Output is interfaced to the existing GPS, additional attenuation maybe required to the existing GPS if the existing Antenna had no Pre-Amp Gain. For available attenuators visit https://www.pasternack.com/nsearch.aspx?keywords=PE7003&view_type=grid. Pasternak TNC Attenuators (PE7003-xx (xx = dB value))

- Based on the steps above, document which Splitter outputs will be interface to each GPS and if 5. additional attenuation is required: 1203C GPS GPS
 - a. Splitter J1 is to be interfaced to and provides the 5 Vdc power: _
 - Splitter J3 is to be interface to: HG2021GB01 GPS b.

Best Solution for Flight ID

H/W RMU-855's provide Flight ID – Good to Go

TDR-94/94D:

- Is the aircraft currently equipped to provide Flight ID to the Transponders?
 - Most European and Transoceanic Aircraft are good to go
 - Does the operator file Flight Plans under tail number or other fixed value?
 - Shadin AFID is good option and world wide aircraft registration ready.
 - The -502 is an option if US Registered but Flight ID will have to be solved again if sold/re-registered outside the US in the future, limiting aircraft value and market
 - CMD STC allows addition of Flight ID from control or AFID if aircraft is exported out of US.

Annunciator Options

H/W RMU-855's provide ADS-B Fail Annunciation – Good to Go

• External Annunciator is NOT required with our STC

TDR-94/94D:

- DDA and AFID
 - Smartly determines the Operational Transponder to properly drive ADS-B Fail Annunciator
 - Installed in vicinity of TDR's utilizing TDR Power, making wire runs and bulkhead penetrations easy with only one wire required to be run to the cockpit.
 - No External Relay required
 - No external Switch or Discrete input required
 - Drives Stand Alone Annunciator or Available Blank in MCMW Panel
 - Deeply engrained in your shops installation processes Easy and very familiar to most
- SR429/IM available with -502

H/W Strapping Instructions

Strap Number	Cut	Unit	Function	Strap Definition GND = Jumper wire installed (UNCUT) = 0 OPEN = Jimper wire NOT installed (CUT) = 1					
		XPDR (ADS D Out)	ADSB	W51	W50	W49	ADSB Emitter	Category	
		(ADSB Out)	Emitter	(IVISB)		(LSB)	(Aircraft Type 4	Code)	
			Category	0	0	0	No ADSB emitt	ter	
							information (not	t used)	
W49				0	0	1	Light (< 15,000	bs)	
				0	1	0	Small (15,000 to	75,000 lbs)	
				0	1	1	Large (75,000 to	300,000 lbs)	
W50				1	0	0	High Vortex Larg	ge	
				1	0	1	Heavy (> 300,00	0 lbs)	
				1	1	0	High Performan	ce	
W51				1	1	1	Rotorcraft		
		XPDR	A/C Length &	Lengt	n Code	Width Code	1	har lele	
		(ADS-B Out)	Width	W54	W53	W52	(Motore)	(Motors)	
			Category	ME bit 22	ME bit 23	ME bit 24	(Ivieters)	(iviecers)	
				0	0	0	No Data	No Data	
W52				0	0	1	L < 15	W < 23	
				0	1	0	L < 25	W < 28.5	
				0				W = 28.5 to	
					1	1	L < 25	34	
W53				1	0	0	L < 35	W < 33	
				1	0	1	L < 35	W = 33 to 38	
				1	1	0	L < 45	W < 39.5	
W54				1	1	1	L < 45	W < 45	

TDR-94/D Helpful **Troubleshooting Info**

Initial Steps to Troubleshoot Annunciator Issues/suspect DDA issues:
Note: The DDA provides the ground to light the ADS-B Fail Annunciator via an internal Normally Closed Reed Relay. Pin 1 will ring to Power ground Pin 24 with no power applied.
Note: The DDA uses both TDR outputs to determine the Operational vs Standby TDR.
Note: When the Operational TDR is determined by the DDA, then it looks at the operational transponder's Label 353-20 0 = ADS-B Out good (DDA Relay opens turning the annunciator off), 1 = ADS-B Out Fail (Relay remains closed).
Note: If both TDRs are in Standby, the DDA opens the relay, turning the annunciator off.
Troubleshooting Steps:

Troubleshooting Steps:

- 1. Verify TDR Mode A and C (Altitude) are functioning properly using an IFR Test Set.
- 2. Disconnect the DDA, the annunciator should be off.
- 3. Verify power to the DDA
- 4. Apply a ground to DDA plug pin 1, the annunciator should be lit.
- Re-install the DDA
- 6. Put both TDR's in Standby, the annunciator should turn off.
- 7. Verify the GPS Bus speed and ensure the TDR's GPS bus speed strapping pin are set appropriately.
- 8. Using an A429 analyzer, monitor the operational TDR output at the DDA, look at 353-20, ADS-B Out Status, 0 = ADS-B Out Good

1		and a star and a	E_2447		1 CART AT 1 CART AT 1	Bus 3 = 5 Hz	Ground	
	TDR-94/D GF	PS Inputs and Speed Strapping	TDR-94/	D AIS/AI	DS/X-Side IOC Input and Speed Strapping			
P2	49, 50	GPS 1 A429 Input Port	P2	39, 40	AIS/ADS/X-Side IOC A429 Input Port	Strap Common	D4D 4D	
P1	18	GPS 1 Input Port Bus Speed (Gnd = Hi)	P1	57	AIS/ADS/X-side IOC A429 Input Port Bus Speed (Gnd = Hi)	🥖 (or Ground)	P1B-4D	
P2	29, 30	GPS 2 A429 Input Port	TDR-94/	D FMS/II	RS/On-Side IOC Input	Side Straps	P1B-5B	P1B-5A
P1	26	GPS 2 Input Port Bus Speed (Gnd = Hi)	P2	27, 28	FMS/IRS/On-Side IOC A429 Input Port	5 Left / #1	Ground	Open
land in the		San Barris San Barris	P1	24	FMS/IRS Input Port Bus Speed (Gnd = Hi)	Right / #2	Open	Ground

GPS-4000S Strapping Matrix Bus Number and speed P1B-4C P1A-5D 1 and 2 = HS, 3 = HS Open Open Ground 1 and 2 = HS, 3 = LS Open 1 and 2 = LS, 3 = LS Ground Open 1 and 2 = LS, 3 = HS Ground Ground GPS-1 Output Bus = P1B-1A, -1B GPS-2 Output Bus = P1B-6A, -6B GPS-3 Output Bus = P1B-11A, -11B

TP-4A

Open

Ground

TP-9C

Open

Rate 1Hz/5Hz

Related

Bus 1 and 2 = 1

Hz

Bus 1 and 2 = 5

Hz

Bus 3 = 1 Hz

TDR-94/D Mount w/Connectors

Link to Strapping Doc

P1 - Pin Name		Pin #	400A/400XP/400T	Falcon2000/EX	Falcon50/EX
Length/Width (LSB)		1	ADS-B Common	Strobe	Strobe
Length/Width	1	2	Open	Open	Open
Length/Width (MSB)]	3	Open	Open	Open
GPS Long Offset (LSB)*1		4	Open	Open	Open
GPS Long Offset*1	P R	5	ADS-B Common	ADS-B Common	ADS-B Common
GPS Long Offset (MSB)*1	6	6	Open	Open	Open
Navigational Accuracy Category- Velocity (NACv)	Donfig	7	ADS-B Common	ADS-B Common	ADS-B Common
SDA	Tab	8	ADS-B Common	ADS-B Common	ADS-B Common
ADS-B RX/Fail Disable	3	9	ADS-B Common	ADS-B Common	ADS-B Common
ADS-B RX/Fail Disable	Pins	10	ADS-B Common	ADS-B Common	ADS-B Common
Aircraft Type 0	1	20	Strobe	Strobe	Strobe
Aircraft Type 1	1	21	Open	Open	Open
Aircraft Type 2		22	Open	Open	Open
ADS-B Configuration Parity		23	Open	ADS-B Common	ADS-B Common
TCAS Installed		13	Common	Common	Common
Control Altitude		14	Common	Common	Common
Configuration 0		28	Open	Open	Open
Configuration 1		17	Common	Common	Common
GPS #1Bus Speed		18	Common	Common	Common
GPS #2 Bus Speed	P	26	Common	Common	Common
Onside Concentrator (FMS/IRS) Bus Speed	s Spee	24	Open	Open	Open
X-side Concentrator (AIS/ADS) Bus Speed	a	57	Open	Open	Open
ADS-B Strap Common		12	ADS-B Common	ADS-B Common	ADS-B Common
ADS-B Strobe Pin (& X-Side)		30	Strobe	Strobe	Strobe

TDR-94/D Strapping Instructions

Pro Line

P2				
Pin Name	Pin #	Strapping	Strapping	Strapping
IOC GPS Disable	41	Common	Common	Common
2/3 AHR5 Select*2	42	Common	Common	Common
Max Airspeed	43	Open	Open	Open
Max Airspeed	44	Open	Open	Open
Max Airspeed	45	Common	Common	Common
SDI Input A	46	LH - Open RH - Common	LH - Open RH – Common	LH - Open RH - Common
SDI Input B	47	LH - Common RH Open	LH - Common RH Open	LH - Common RH Open
Disable GPS Integrity Limit	53	Open	Open	Open
CSDB/A429 Control	56	Open	Open	Open
Strap Common	52	Common	Common	Common

PMA'd Installation Accessories

- Rack Mount (IK-837) Config Modules for Primus II
- Wiring Harnesses (both DDA and AFID)
- **DDA Brackets**
 - Right Angle Bracket (aka L-Bracket)
 - Side Mount Bracket for stacked Transponders
- **AFID Brackets**
 - L Bracket
 - Undershelf Bracket
 - Side Mount Bracket for stacked Transponders
 - Top Mount Bracket

PMA'd Installation Accessories

Harnesses, Brackets & Hardware available

Side Mount Bracket

Wire Harness

Right Bracket

8

PMA'd Installation Accessories

DDA L Bracket Mount

Under Shelf Mount

Top of TDR Rack Mount

For Quotes, Orders, Questions and Information Barb Mahoney – <u>Barb@CMDFlightSolutions.com</u> or 406.570.9699

For technical support regarding installation of our STCs Dan Buzz – <u>Dan@CMDFlightSolutions.com</u> or 269.753.9003